Western Connecticut Council of Governments

Minimizing Light Pollution

September 12, 2018

Leo Smith, Suffield, CT
Member, Illuminating Engineering Society
Member, IES Roadway Lighting Committee
Northeast Regional Director - IDA
Artificial Night Sky Brightness due to Light Pollution in North America
A preliminary picture of the growth from 1950 to 2025
Light Pollution In the Northeast
Skyglow is caused by the downward scattering of upward light by air molecules and also aerosols, mostly water droplets and dust. The longer the path length through the lowest part of the atmosphere, the more the scattering. Light that goes straight up is mostly reflected, and has shorter paths through the lower scattering layers. The low angle light is mostly directly radiated, and it is this that causes most of the sky glow well away from the source.
2003 blackout in Ontario, Canada

Before

During
Connecticut Laws & Regulations Addressing Light Pollution

1997 – Connecticut Law Shielding Streetlights on State Highways

2001 – Connecticut Expands Law to Include Municipal Roads for Shielding Streetlights

2003 – Connecticut Law Limiting Light Trespass from Floodlights on State Highways

2006 – Connecticut Law on Outdoor Lighting at State Facilities

2006 – Connecticut Building Code on Exterior Lighting
2009 – 16a-38k- 4 State Law on Building Construction Standards require that a project implement at least two out of 15 site selection and development strategies, which include one to reduce light pollution by doing such things as installing automatic light controls and limiting exterior lighting (Conn. Agencies Regs. §§ 16a-38k-4 and 16a-38k-6).
National Laws & Codes Addressing Light Pollution

2004 – ASHREA 90.1 – Exterior Lighting

2005 - California Title 24 (California Energy Code) Applies to Non Residential Outdoor Lighting

2006 - Model Outdoor Lighting Ordinance (MLO) International Dark-Sky Association and the Illuminating Engineering Society Joint Effort

## Partial List of Municipalities with Light Pollution Ordinances in Connecticut

<table>
<thead>
<tr>
<th>Ashford</th>
<th>East Windsor</th>
<th>Southbury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avon</td>
<td>Ellington</td>
<td>South Windsor</td>
</tr>
<tr>
<td>Bloomfield</td>
<td>Farmington</td>
<td>Stratford</td>
</tr>
<tr>
<td>Branford</td>
<td>Glastonbury</td>
<td>Suffield</td>
</tr>
<tr>
<td>Brookfield</td>
<td>Greenwich</td>
<td>Tolland</td>
</tr>
<tr>
<td>Cheshire</td>
<td>Guilford</td>
<td>Wallingford</td>
</tr>
<tr>
<td>Clinton</td>
<td>Killingworth</td>
<td>Watertown</td>
</tr>
<tr>
<td>Colchester</td>
<td>Manchester</td>
<td>West Hartford</td>
</tr>
<tr>
<td>Darien</td>
<td>Milford</td>
<td>Weston</td>
</tr>
<tr>
<td>Derby</td>
<td>Ridgefield</td>
<td>Wethersfield</td>
</tr>
<tr>
<td>East Hartford</td>
<td>Somers</td>
<td>Wilton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Windsor</td>
</tr>
</tbody>
</table>
Municipal Exterior Lighting Regulations In Connecticut Often Focus on basics

- Shielding Requirements
- Light Trespass Restrictions across property line
- No Objectionable (?) Glare

Some municipalities have more comprehensive outdoor lighting regulations. Examples:

- Require a Lighting Plan as part of the Site Plan
- No floodlighting
- All building lighting for aesthetics will be full cut-off (Fully shielded – no uplight)
For Exterior Lighting, the U.S. Department of Energy promotes use of

- Dimmers
- Occupancy Controls
- Motion Sensor Controls
- Timers

to reduce energy waste

Exterior Lighting Codes & Regulations started around 2000 and are likely to increase in the coming years
How to Avoid Overlighting When Using LEDs

Achieving Visibility Equivalence using 1/3 the lumen output of traditional light sources
Only a fraction of the lumen output reaches the target area – most of the lumens hit inside the fixture shell or are directed at high angles away from the target area.
LED lights are directional - pointed at the target

3000 LED lumens will equal 9000 HPS lumens in terms of Visibility equivalence
LED Blue Wavelength Problem

Chart From U.S. DOE: Solid State Lighting
2 ways to produce white light with LEDs

RGB (Red, Green, Blue) - LED Color Mix
Blue + Yellow Phosphor - Blue LED with P
Figure 5.5: White Light LED Package Efficacy Projections for Commercial Product
Most LED Chips have a Phosphor coating. Phosphor mix controls how much Blue Wavelength emission is suppressed.
Table 1. Selected blue light characteristics of various outdoor lighting sources at equivalent lumen output.

<table>
<thead>
<tr>
<th>Row</th>
<th>Light source</th>
<th>CCT (K)</th>
<th>% Blue*</th>
<th>Luminous Flux (lm)</th>
<th>Scotopic content relative to HPS</th>
<th>Melanopic content relative to HPS**</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PC white LED</td>
<td>2700</td>
<td>17% - 20%</td>
<td>1000</td>
<td>1.77 - 1.82</td>
<td>1.90 - 2.06</td>
</tr>
<tr>
<td>B</td>
<td>PC white LED</td>
<td>3000</td>
<td>18% - 25%</td>
<td>1000</td>
<td>1.89 - 2.13</td>
<td>2.10 - 2.51</td>
</tr>
<tr>
<td>C</td>
<td>PC white LED</td>
<td>3500</td>
<td>22% - 27%</td>
<td>1000</td>
<td>2.04 - 2.37</td>
<td>2.34 - 2.97</td>
</tr>
<tr>
<td>D</td>
<td>PC white LED</td>
<td>4000</td>
<td>27% - 32%</td>
<td>1000</td>
<td>2.10 - 2.65</td>
<td>2.35 - 3.40</td>
</tr>
<tr>
<td>E</td>
<td>PC white LED</td>
<td>4500</td>
<td>31% - 35%</td>
<td>1000</td>
<td>2.35 - 2.85</td>
<td>2.75 - 3.81</td>
</tr>
<tr>
<td>F</td>
<td>PC white LED</td>
<td>5000</td>
<td>34% - 39%</td>
<td>1000</td>
<td>2.60 - 2.89</td>
<td>3.18 - 3.74</td>
</tr>
<tr>
<td>G</td>
<td>PC white LED</td>
<td>5700</td>
<td>39% - 43%</td>
<td>1000</td>
<td>2.77 - 3.31</td>
<td>3.44 - 4.52</td>
</tr>
<tr>
<td>H</td>
<td>PC white LED</td>
<td>6500</td>
<td>43% - 48%</td>
<td>1000</td>
<td>3.27 - 3.96</td>
<td>4.38 - 5.84</td>
</tr>
<tr>
<td>I</td>
<td>Narrowband amber LED</td>
<td>1606</td>
<td>0%</td>
<td>1000</td>
<td>0.36</td>
<td>0.12</td>
</tr>
<tr>
<td>J</td>
<td>Low pressure sodium</td>
<td>1719</td>
<td>0%</td>
<td>1000</td>
<td>0.35</td>
<td>0.10</td>
</tr>
<tr>
<td>K</td>
<td>PC amber LED</td>
<td>1872</td>
<td>1%</td>
<td>1000</td>
<td>0.70</td>
<td>0.42</td>
</tr>
<tr>
<td>L</td>
<td>High pressure sodium</td>
<td>1959</td>
<td>9%</td>
<td>1000</td>
<td>0.89</td>
<td>0.86</td>
</tr>
<tr>
<td>M</td>
<td>High pressure sodium</td>
<td>2041</td>
<td>10%</td>
<td>1000</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

* Percent blue calculated according to LSPDD: Light Spectral Power Distribution Database, http://galileo.graphycs.cegepsherbrooke.qc.CA/app/en/home. The specific calculation, developed for evaluating the potential for affecting sky glow, divides the radiant power contained in the wavelengths between 405 and 530 nm by the total radiant power contained from 380 to 780 nm, for each light source.

** Melanopic content calculated according to CIE Irradiance Toolbox, http://files.cie.co.at/784_TN003_Toolbox.xls, 2015 as derived from Lucas et al., 2014.

Key: PC -- Phosphor Converted; LED -- Light Emitting Diode

Controlling Color Temperature - (LED)

Limit CCT to 2,700K (warm white) to minimize light pollution

<table>
<thead>
<tr>
<th>Correlated Color Temperature (CCT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,700K to 2,800K</td>
</tr>
<tr>
<td>5,000K to 6,500K</td>
</tr>
</tbody>
</table>

2,700K – Warmer – more inviting – less blue
4,000K and above – more bluish – colder – creates more light pollution
Blue-Rich Light Issue Raised in IDA White Paper - 2010

International Dark-Sky Association

Visibility, Environmental, and Astronomical Issues Associated with Blue-Rich White Outdoor Lighting

May 4, 2010
Blue-rich LED lighting will increase scatter, resulting in increased levels of sky glow.

Blue-rich LED light at night is more likely to alter the circadian rhythm and photoperiod in the animal world.

New metrics are needed to better describe the ramifications of shorter wavelength emissions on sky glow, human health and plant & animal life.

“CRI, CCT and the Scotopic/Photopic Ratio are too blunt to model the range of significant impacts”.
American Medical Association 2009

- Advocates that all future outdoor lighting be of energy efficient designs to reduce waste of energy and production of greenhouse gasses that result from this wasted energy use, and be it further.

- Develops and enacts a policy that supports light pollution reduction efforts and glare reduction efforts at both the national and state levels; and be it further.

- Supports that all future streetlights will be of a fully shielded design or similar non-glare design to improve the safety of our roadways for all, but especially vision impaired and older drivers.
American Medical Association
LED Warning – Issued June 14, 2016

Covers Environmental Effects of Light Emitting Diode (LED) Community Lighting

AMA encourages the use of 3000K color temperature or lower lighting for outdoor installations…(limit blue light)

All LED lighting should be properly shielded to minimize glare and detrimental human and environmental effects

Consideration should be given to dimming LED lighting for off-peak time periods

Cities with 3000K or lower CCT LEDs

- New York City
- Chicago
- San Francisco
- Los Angeles
- San Diego
- Tucson
- Phoenix
- Toronto
- Montreal
- Davis

Some use 2700K CCT for Residential and 3000K for Commercial

States with Light Pollution laws

- Arizona
- Arkansas
- California
- Colorado
- Connecticut
- Delaware
- Hawaii
- Maine
- Michigan
- Minnesota
- Montana
- New Hampshire
- New Mexico
- Rhode Island
- Texas
- Vermont
- Virginia
- Wyoming

…and growing
AMA 2016 Research Paper on LED Lighting was co-authored by Travis Longcore
Light Pollution and Wildlife

Wildlife concerns due to obtrusive light include:

Habitat Disturbance
Wildlife Behavior
Wildlife Survival

A Few Examples:

• Artificial Light Contributes to an Estimated **100,000,000** Bird Deaths Annually in USA

• Artificial Light Contributes to Thousands of Sea Turtle Deaths Annually
New York state to dim lights to save migrating birds

April 28, 2015

Migratory birds are thought to be confused by constellations of city lights, causing them to fatally crash.
For frogs, a quick increase in illumination causes a reduction in visual capability from which the recovery time may be minutes to hours. After becoming adjusted to a light, frogs may be attracted to it as well.
Communication

- Female glow-worms attract males up to 45 m away with bioluminescent flashes; the presence of artificial lighting reduces the visibility of these communications.

- The complex visual communication system of fireflies could be impaired by stray light.
Community Ecology

- Competition for times for foraging
- Increased Predatory Risk
- Ecosystem effects – long term changes in the balance
Implementing Good Light Pollution Controls Contributes to Improving Energy Conservation
$2 Billion
In Wasted Energy!
Energy Consumed by End User Outdoor Lighting = 6%
Energy Waste

Generation of one KWh of electricity creates 1.34 pounds of carbon dioxide waste (CO2).

Lighting the sky with wasted uplight creates 14.7 million tons of CO2 annually.

Coal needed to generate the wasted light would be about 3.6 million tons of per year.
Outdoor Lighting - Recommended Practices

No Charge

Natural Sounds and Night Skies Division

RP-33 Lighting for the Exterior Environment

Both at Illuminating Engineering Society Bookstore at IES.ORG

No Charge

Model Lighting Ordinance

$60

Joint IDA - IES Model Lighting Ordinance (MLO) with User’s Guide

June 15, 2011
Best Practices for Night Skies

Light only WHERE & WHEN to the Minimum Level Needed
Shield – Point Downward – Consider Dimmer & Timer

https://www.nps.gov/subjects/nightskies/practices.htm
Wilderness Value of Night Skies

“Dark night skies are a wilderness characteristic”

“A single glaring light can reel back those seeking solitude or communion with nature…”

https://www.nps.gov/subjects/nightskies/wilderness.htm
Night Skies are a Public Resource

- A Resource of Nature
  
  Natural darkness essential for wildlife

  Nearly 50% of species are nocturnal

As a Cultural Resource

  The same dark and starry sky has evoked countless myths, art, literature and music from cultures around the world

As an Economic Resource

  - Astronomical/Optical Research
  - Amateur Stargazing
  - Wilderness Camping

https://www.nps.gov/subjects/nightskies/resources.htm
Model Lighting Ordinance Uses 5 Lighting Zones

- **LZ-0** - no ambient light
  - Nature preserves, parks, trails
  - 2 acre single family residential
- **LZ-1** - low ambient light
  - Single family residential in 1+ acre zones
  - Single stand alone suburban small business
- **LZ-2** - moderate (some) ambient light
  - Concentrated commercial downtown strip
  - Parking lot for malls or large apartment complex
Lighting Zones Continued

LZ-3 - moderately high ambient light
- Concentrated urban commercial district
- Major City urban core business district
- Applies mostly to street front settings

LZ-4 - extremely high ambient light
- Rare – Times Square, Las Vegas Strip

LZ-3 and LZ-4 Ambient Light are usually limited to areas tangent to the street and sidewalk – where ambient light exists.
Lighting Zones now widely used by National Code Developers

- Illuminating Engineering Society
- California Title 24 Energy Code
- National League of Cities – Sustainable Cities
- US Green Building Council
- US Department of Energy Programs
- International Energy Conservation Code
  - IECC Lighting Zone specifications are part of Connecticut’s State Building Code
Example of Lighting Zones, taken from RP-33 Lighting For The Exterior Environments

Light Zone Map
Adopted November 23, 2004
As Amended through November 15, 2007
As Amended through October 13, 2009
As Amended through October 22, 2013

Legend
Light Zone
- LZ-0; No Ambient Lighting
- LZ-1; Low Ambient Lighting
- LZ-2; Moderate Ambient Lighting
- LZ-3; Moderately High Ambient Lighting

City of Plymouth

This represents a compilation of information and data from city, county, state and other sources that has not been field verified. Information should be field verified and compared with original source documents.
# Exterior Lighting Zones

**Table C405.6.2(2)**

<table>
<thead>
<tr>
<th></th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
<th>Zone 4</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Base Site Allowance</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500 W</td>
<td>600 W</td>
<td>750 W</td>
<td>1300 W</td>
</tr>
<tr>
<td>** Tradable Surfaces**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Uncovered Parking Areas</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking areas and drives</td>
<td>0.04 W/ft^2</td>
<td>0.06 W/ft^2</td>
<td>0.10 W/ft^2</td>
<td>0.13 W/ft^2</td>
</tr>
<tr>
<td><strong>Building Grounds</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkways less than 10 feet wide</td>
<td>0.7 W/linear foot</td>
<td>0.7 W/linear foot</td>
<td>0.8 W/linear foot</td>
<td>1.0 W/linear foot</td>
</tr>
<tr>
<td>Walkways 10 feet wide or greater</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plaza areas</td>
<td>0.14 W/ft^2</td>
<td>0.14 W/ft^2</td>
<td>0.16 W/ft^2</td>
<td>0.2 W/ft^2</td>
</tr>
<tr>
<td>Special Feature Areas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stairways</td>
<td>0.75 W/ft^2</td>
<td>1.0 W/ft^2</td>
<td>1.0 W/ft^2</td>
<td>1.0 W/ft^2</td>
</tr>
<tr>
<td>Pedestrian Tunnels</td>
<td>0.15 W/ft^2</td>
<td>0.15 W/ft^2</td>
<td>0.2 W/ft^2</td>
<td>0.3 W/ft^2</td>
</tr>
</tbody>
</table>
Lighting’s Off-Site Impacts - Use of Shielding/Glare Control

Set Requirements for Fully Shielded Lighting Fixtures for all new commercial applications

- By Special Permit, exception for decorative post top parking lot and street lighting fixtures

Adopt BUG Rating Limits from the MLO

* Backlight, Uplight and Glare
* BUG Allowances vary by Lighting Zone

Set Lighting Curfews in Business districts

* 1 hour after closing, exterior lights are turned off (or programmed to dim to 30%) – Motion activation if necessary.
Backlight, Uplight and Glare – BUG Rating

Uplight = above 90°

Glare BVH and BH - Above 60°

Back Light

Forward Light

Glare FVH and FH - Above 60°
BUG Ratings now included as part of Luminaire Manufacturer’s Photometrics – easy to check

### LED Lamp Details

LED = Philips Lumileds Luxeon R, CRI = 70, CCT = 4000K (+/- 350K)
System (LED + driver) rated life = 100,000 hrs

<table>
<thead>
<tr>
<th>LAMP</th>
<th>TYPICAL DELIVERED LUMENS</th>
<th>TYPICAL SYSTEM WATTAGE (W)</th>
<th>TYPICAL CURRENT @ 120V (A)</th>
<th>TYPICAL CURRENT @ 208V (A)</th>
<th>TYPICAL CURRENT @ 240V (A)</th>
<th>TYPICAL CURRENT @ 277V (A)</th>
<th>LED CURRENT (mA)</th>
<th>HID EQUIVALENT</th>
<th>LUMINAIRE EFFICACY RATING (LM/W)</th>
<th>BUG RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>35W32LED4K-R-LF2</td>
<td>3500</td>
<td>35</td>
<td>0.29</td>
<td>0.17</td>
<td>0.15</td>
<td>0.15</td>
<td>350</td>
<td>70 - 100</td>
<td>91.4</td>
<td>BI-U0-G1</td>
</tr>
<tr>
<td>35W32LED4K-R-LF3</td>
<td>3500</td>
<td>35</td>
<td>0.29</td>
<td>0.17</td>
<td>0.15</td>
<td>0.15</td>
<td>350</td>
<td>70 - 100</td>
<td>91.4</td>
<td>BI-U0-G1</td>
</tr>
<tr>
<td>35W32LED4K-R-LF4</td>
<td>3500</td>
<td>35</td>
<td>0.29</td>
<td>0.17</td>
<td>0.15</td>
<td>0.15</td>
<td>350</td>
<td>70 - 100</td>
<td>91.4</td>
<td>BI-U0-G1</td>
</tr>
<tr>
<td>55W32LED4K-R-LF2</td>
<td>4500</td>
<td>52</td>
<td>0.40</td>
<td>0.23</td>
<td>0.21</td>
<td>0.19</td>
<td>530</td>
<td>100 - 150</td>
<td>86.5</td>
<td>BI-U0-G1</td>
</tr>
<tr>
<td>55W32LED4K-R-LF3</td>
<td>4500</td>
<td>52</td>
<td>0.40</td>
<td>0.23</td>
<td>0.21</td>
<td>0.19</td>
<td>530</td>
<td>100 - 150</td>
<td>86.5</td>
<td>BI-U0-G1</td>
</tr>
<tr>
<td>55W32LED4K-R-LF4</td>
<td>4500</td>
<td>52</td>
<td>0.40</td>
<td>0.23</td>
<td>0.21</td>
<td>0.19</td>
<td>530</td>
<td>100 - 150</td>
<td>86.5</td>
<td>BI-U0-G1</td>
</tr>
<tr>
<td>55W48LED4K-R-LF2</td>
<td>5000</td>
<td>55</td>
<td>0.38</td>
<td>0.22</td>
<td>0.23</td>
<td>0.21</td>
<td>350</td>
<td>100 - 150</td>
<td>90.9</td>
<td>BI-U0-G1</td>
</tr>
<tr>
<td>55W48LED4K-R-LF3</td>
<td>5000</td>
<td>55</td>
<td>0.38</td>
<td>0.22</td>
<td>0.23</td>
<td>0.21</td>
<td>350</td>
<td>100 - 150</td>
<td>90.9</td>
<td>BI-U0-G1</td>
</tr>
<tr>
<td>55W48LED4K-R-LF4</td>
<td>5000</td>
<td>55</td>
<td>0.38</td>
<td>0.22</td>
<td>0.23</td>
<td>0.21</td>
<td>350</td>
<td>100 - 150</td>
<td>90.9</td>
<td>BI-U0-G1</td>
</tr>
<tr>
<td>80W48LED4K-R-LF2</td>
<td>7200</td>
<td>79</td>
<td>0.63</td>
<td>0.36</td>
<td>0.34</td>
<td>0.31</td>
<td>530</td>
<td>150-200</td>
<td>91.1</td>
<td>B2-U0-G2</td>
</tr>
<tr>
<td>80W48LED4K-R-LF3</td>
<td>7200</td>
<td>79</td>
<td>0.63</td>
<td>0.36</td>
<td>0.34</td>
<td>0.31</td>
<td>530</td>
<td>150-200</td>
<td>91.1</td>
<td>B2-U0-G2</td>
</tr>
<tr>
<td>80W48LED4K-R-LF4</td>
<td>7200</td>
<td>79</td>
<td>0.63</td>
<td>0.36</td>
<td>0.34</td>
<td>0.31</td>
<td>530</td>
<td>150-200</td>
<td>91.1</td>
<td>B2-U0-G2</td>
</tr>
<tr>
<td>70W46LED4K-R-LF2</td>
<td>6200</td>
<td>71</td>
<td>0.58</td>
<td>0.34</td>
<td>0.32</td>
<td>0.3</td>
<td>350</td>
<td>100 - 150</td>
<td>87.3</td>
<td>B2-U0-G2</td>
</tr>
<tr>
<td>70W46LED4K-R-LF3</td>
<td>6200</td>
<td>71</td>
<td>0.58</td>
<td>0.34</td>
<td>0.32</td>
<td>0.3</td>
<td>350</td>
<td>100 - 150</td>
<td>87.3</td>
<td>B2-U0-G2</td>
</tr>
<tr>
<td>70W46LED4K-R-LF4</td>
<td>6200</td>
<td>71</td>
<td>0.58</td>
<td>0.34</td>
<td>0.32</td>
<td>0.3</td>
<td>350</td>
<td>100 - 150</td>
<td>87.3</td>
<td>B2-U0-G2</td>
</tr>
<tr>
<td>70W64LED4K-R-LF2</td>
<td>9300</td>
<td>103</td>
<td>0.80</td>
<td>0.46</td>
<td>0.42</td>
<td>0.38</td>
<td>530</td>
<td>200 - 250</td>
<td>90.3</td>
<td>B2-U0-G2</td>
</tr>
<tr>
<td>70W64LED4K-R-LF3</td>
<td>9300</td>
<td>103</td>
<td>0.80</td>
<td>0.46</td>
<td>0.42</td>
<td>0.38</td>
<td>530</td>
<td>200 - 250</td>
<td>90.3</td>
<td>B2-U0-G2</td>
</tr>
<tr>
<td>70W64LED4K-R-LF4</td>
<td>9300</td>
<td>103</td>
<td>0.80</td>
<td>0.46</td>
<td>0.42</td>
<td>0.38</td>
<td>530</td>
<td>200 - 250</td>
<td>90.3</td>
<td>B2-U0-G2</td>
</tr>
<tr>
<td>90W80LED4K-R-LF2</td>
<td>8600</td>
<td>87</td>
<td>0.78</td>
<td>0.43</td>
<td>0.40</td>
<td>0.34</td>
<td>350</td>
<td>150-200</td>
<td>98.9</td>
<td>B2-U0-G2</td>
</tr>
<tr>
<td>90W80LED4K-R-LF3</td>
<td>8600</td>
<td>87</td>
<td>0.78</td>
<td>0.43</td>
<td>0.40</td>
<td>0.34</td>
<td>350</td>
<td>150-200</td>
<td>98.9</td>
<td>B2-U0-G2</td>
</tr>
<tr>
<td>90W80LED4K-R-LF4</td>
<td>8600</td>
<td>87</td>
<td>0.78</td>
<td>0.43</td>
<td>0.40</td>
<td>0.34</td>
<td>350</td>
<td>150-200</td>
<td>98.9</td>
<td>B2-U0-G2</td>
</tr>
<tr>
<td>125W80LED4K-R-LF2</td>
<td>12000</td>
<td>129</td>
<td>1.15</td>
<td>0.61</td>
<td>0.58</td>
<td>0.5</td>
<td>530</td>
<td>250 - 320</td>
<td>93.0</td>
<td>B2-U0-G2</td>
</tr>
<tr>
<td>125W80LED4K-R-LF3</td>
<td>12000</td>
<td>129</td>
<td>1.15</td>
<td>0.61</td>
<td>0.58</td>
<td>0.5</td>
<td>530</td>
<td>250 - 320</td>
<td>93.0</td>
<td>B2-U0-G2</td>
</tr>
<tr>
<td>125W80LED4K-R-LF4</td>
<td>12000</td>
<td>129</td>
<td>1.15</td>
<td>0.61</td>
<td>0.58</td>
<td>0.5</td>
<td>530</td>
<td>250 - 320</td>
<td>93.0</td>
<td>B2-U0-G2</td>
</tr>
<tr>
<td>150W80LED4K-R-LF2</td>
<td>12000</td>
<td>129</td>
<td>1.15</td>
<td>0.61</td>
<td>0.58</td>
<td>0.5</td>
<td>530</td>
<td>250 - 320</td>
<td>93.0</td>
<td>B2-U0-G2</td>
</tr>
<tr>
<td>150W80LED4K-R-LF3</td>
<td>12000</td>
<td>129</td>
<td>1.15</td>
<td>0.61</td>
<td>0.58</td>
<td>0.5</td>
<td>530</td>
<td>250 - 320</td>
<td>93.0</td>
<td>B2-U0-G2</td>
</tr>
<tr>
<td>150W80LED4K-R-LF4</td>
<td>12000</td>
<td>129</td>
<td>1.15</td>
<td>0.61</td>
<td>0.58</td>
<td>0.5</td>
<td>530</td>
<td>250 - 320</td>
<td>93.0</td>
<td>B2-U0-G2</td>
</tr>
<tr>
<td>150W80LED4K-R-LF5</td>
<td>12000</td>
<td>129</td>
<td>1.15</td>
<td>0.61</td>
<td>0.58</td>
<td>0.5</td>
<td>530</td>
<td>250 - 320</td>
<td>93.0</td>
<td>B2-U0-G2</td>
</tr>
</tbody>
</table>
# Model Lighting Ordinance BUG Rating

<table>
<thead>
<tr>
<th>Lighting Zone</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater than 2 mounting heights from the property line</td>
<td>B4</td>
<td>B4</td>
<td>B4</td>
<td>B4</td>
<td>B4</td>
</tr>
<tr>
<td>1 to less than 2 mounting heights from the property line and properly oriented</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
<td>B4</td>
<td>B4</td>
</tr>
<tr>
<td>0.5 to less than 1 mounting heights from the property line and properly oriented</td>
<td>B0</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
<td>B3</td>
</tr>
<tr>
<td>Less than 0.5 mounting heights from the property line and properly oriented</td>
<td>B0</td>
<td>B0</td>
<td>B0</td>
<td>B1</td>
<td>B2</td>
</tr>
<tr>
<td>Lighting Zone</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Allowed Uplight Rating for street or area lighting</td>
<td>U0</td>
<td>U0</td>
<td>U0</td>
<td>U0</td>
<td>U0</td>
</tr>
<tr>
<td>Allowed Uplight Rating for ornamental parking lighting and luminaires not used for street or area lighting</td>
<td>U0</td>
<td>U1</td>
<td>U2</td>
<td>U3</td>
<td>U4</td>
</tr>
<tr>
<td>Permitted Lumens</td>
<td>0</td>
<td>20</td>
<td>100</td>
<td>1,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Lighting Zone</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>-------------------------------------------------------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Any Luminaire not ideally oriented with 1 to less than 2 mounting heights to any property line of concern</td>
<td>G0</td>
<td>G0</td>
<td>G1</td>
<td>G1</td>
<td>G2</td>
</tr>
<tr>
<td>Any Luminaire not ideally oriented with 0.5 to less than 1 mounting height to any property line of concern</td>
<td>G0</td>
<td>G0</td>
<td>G0</td>
<td>G1</td>
<td>G1</td>
</tr>
<tr>
<td>Any Luminaire not ideally oriented with less than 0.5 mounting height to any property line of concern</td>
<td>G0</td>
<td>G0</td>
<td>G0</td>
<td>G0</td>
<td>G1</td>
</tr>
</tbody>
</table>

¹ If the luminaire is not optically symmetric and the nearest property line is less than 2 mounting heights from the front hemisphere of the luminaire distribution, the reduced glare rating must be met.
### MLO Recommended Practices For Landscape Lighting For Residential

#### Table G - Residential Lighting Limits

<table>
<thead>
<tr>
<th>Lighting Application</th>
<th>LZ 0</th>
<th>LZ 1</th>
<th>LZ 2</th>
<th>LZ 3</th>
<th>LZ 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Maximum Allowed Luminaire Lumens* for Unshielded Luminaire at one entry only</td>
<td>Not allowed</td>
<td>420 lumens</td>
<td>630 lumens</td>
<td>630 lumens</td>
<td>630 lumens</td>
</tr>
<tr>
<td>Row 2 Maximum Allowed Luminaire Lumens* for each Fully Shielded Luminaire</td>
<td>630 lumens</td>
<td>1,260 lumens</td>
<td>1,260 lumens</td>
<td>1,260 lumens</td>
<td>1,260 lumens</td>
</tr>
<tr>
<td>Row 3 Maximum Allowed Luminaire Lumens* for each Unshielded Luminaire excluding main entry</td>
<td>Not allowed</td>
<td>315 lumens</td>
<td>315 lumens</td>
<td>315 lumens</td>
<td>315 lumens</td>
</tr>
<tr>
<td>Row 4 Maximum Allowed Luminaire Lumens* for each Landscape Lighting</td>
<td>Not allowed</td>
<td>Not allowed</td>
<td>1,050 lumens</td>
<td>2,100 lumens</td>
<td>2,100 lumens</td>
</tr>
<tr>
<td>Row 5 Maximum Allowed Luminaire Lumens* for each Shielded Directional Flood Lighting</td>
<td>Not allowed</td>
<td>Not allowed</td>
<td>1,260 lumens</td>
<td>2,100 lumens</td>
<td>2,100 lumens</td>
</tr>
<tr>
<td>Row 6 Maximum Allowed Luminaire Lumens* for each Low Voltage Landscape Lighting</td>
<td>Not allowed</td>
<td>Not allowed</td>
<td>525 lumens</td>
<td>525 lumens</td>
<td>525 lumens</td>
</tr>
</tbody>
</table>

* Luminaire lumens equals Initial Lamp Lumens for a lamp, multiplied by the number of lamps in the luminaire.
Maximize Energy Efficiency & Minimize Costs

Dimmers and Network Devices with new LED lighting systems will reduce energy use.

Curfews for Lights Out – reduced to 30% of full capacity after the close of business and pedestrian activity.

Motion activation for outdoor security lighting after business hours.

LED lighting systems for new and replacement lighting.

Dimming a little from full capacity extends life of the LED system. Purchase system with a slightly higher light output than is required, then dim down to the light level needed for the project to extend equipment life.
Dimmable Streetlights

May 2018 – Connecticut Regulators ordered Eversource to develop new rate for dimmable streetlights

August 2018 – Eversource did analysis in Westwood MA of actual data on energy consumption for dimmable streetlights

Anticipated electrical savings of 20% to 30%

Connecticut rate for dimmable streetlights should be in place 2019 – 2020 at the latest
Key Considerations for Replacing older Outdoor Lights with LEDs

- Specify the maximum CCT at preferably 2,700K – no more than 3,000K – minimize blue light levels
- Fixture lumen output of LED can be reduced by 67% of High Pressure Sodium’s fixture output and achieve the same visibility to the eye.
- Choose a luminaire with a light output that will be about 30% greater than what is needed – then using a dimmable lighting system, dim the lights down 30%. This dimming will considerably extend the life of the light compared to having the light operating at 100% output – Extended life reduces maintenance costs.
- Pick best lumens/watt for optimum energy conservation
Key Considerations, cont.

- Fully Shield and eliminate glare when possible.
- Brightness
- Energy Efficiency

Controlling Light Trespass and Sky Glow

Controlling Light (Lumen) Levels

the Use of Dimmers and Timing devices with new LED Lighting systems
Thank you!

CONTACT
Leo Smith – INTERNATIONAL DARK-SKY ASSOCIATION
http://www.darksky.org/
Email - leo@smith.net